Hermite WENO schemes and their application as limiters for Runge–Kutta discontinuous Galerkin method: one-dimensional case

نویسندگان

  • Jianxian Qiu
  • Chi-Wang Shu
چکیده

In this paper, a class of fifth-order weighted essentially non-oscillatory (WENO) schemes based on Hermite polynomials, termed HWENO (Hermite WENO) schemes, for solving one-dimensional nonlinear hyperbolic conservation law systems is presented. The construction of HWENO schemes is based on a finite volume formulation, Hermite interpolation, and nonlinearly stable Runge–Kutta methods. The idea of the reconstruction in the HWENO schemes comes from the original WENO schemes, however both the function and its first derivative values are evolved in time and used in the reconstruction, while only the function values are evolved and used in the original WENO schemes. Comparing with the original WENO schemes of Liu et al. [J. Comput. Phys. 115 (1994) 200] and Jiang and Shu [J. Comput. Phys. 126 (1996) 202], one major advantage of HWENO schemes is its compactness in the reconstruction. For example, five points are needed in the stencil for a fifth-order WENO (WENO5) reconstruction, while only three points are needed for a fifth-order HWENO (HWENO5) reconstruction. For this reason, the HWENO finite volume methodology is more suitable to serve as limiters for the Runge–Kutta discontinuous Galerkin (RKDG) methods, than the original WENO finite volume methodology. Such applications in one space dimension is also developed in this paper. 2003 Elsevier B.V. All rights reserved. AMS: 65M06; 65M60; 65M99; 35L65

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Runge-Kutta discontinuous Galerkin method with a simple and compact Hermite WENO limiter

Abstract In this paper, we propose a new type of weighted essentially non-oscillatory (WENO) limiter, which belongs to the class of Hermite WENO (HWENO) limiters, for the RungeKutta discontinuous Galerkin (RKDG) methods solving hyperbolic conservation laws. This new HWENO limiter is a modification of the simple WENO limiter proposed recently by Zhong and Shu [32]. Both limiters use information ...

متن کامل

Runge-Kutta discontinuous Galerkin method using WENO limiters II: Unstructured meshes

In [20], Qiu and Shu investigated using weighted essentially non-oscillatory (WENO) finite volume methodology as limiters for the Runge-Kutta discontinuous Galerkin (RKDG) methods for solving nonlinear hyperbolic conservation law systems on structured meshes. In this continuation paper, we extend the method to solve two dimensional problems on unstructured meshes, with the goal of obtaining a r...

متن کامل

Runge-Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes

In this paper we generalize a new type of limiters based on the weighted essentially nonoscillatory (WENO) finite volume methodology for the Runge-Kutta discontinuous Galerkin (RKDG) methods solving nonlinear hyperbolic conservation laws, which were recently developed in [31] for structured meshes, to two-dimensional unstructured triangular meshes. The key idea of such limiters is to use the en...

متن کامل

A sub-cell based indicator for troubled zones in RKDG schemes and a novel class of hybrid RKDG+HWENO schemes

Runge Kutta Discontinuous Galerkin (RKDG) schemes can provide highly accurate solutions for a large class of important scientific problems. Using them for problems with shocks and other discontinuities requires that one has a strategy for detecting the presence of these discontinuities. Strategies that are based on total variation diminishing (TVD) limiters can be problem-independent and scale-...

متن کامل

WENO Schemes and Their Application as Limiters for RKDG Methods Based on Trigonometric Approximation Spaces

In this paper, we present a class of finite volume trigonometric weighted essentially non-oscillatory (TWENO) schemes and use them as limiters for Runge-Kutta discontinuous Galerkin (RKDG) methods based on trigonometric polynomial spaces to solve hyperbolic conservation laws and highly oscillatory problems. As usual, the goal is to obtain a robust and high order limiting procedure for such a RK...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003